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I. Derivation of the silencing method 
 

1. Derivative based derivation  
 

Consider a system of   components (nodes), each node   being characterized by activity   . 
The meaning of    is system dependent – in a genetic network it could be the expression 
level of a gene, in a metabolic network the concentration of a reactant and in a social 
context it could represent the probability of being infected by a contagious disease. The 
topology of the system is described by the adjacency matrix     accounting for all direct 

interactions in the system. The dynamics of the system is captured by  
 

   

  
   (       )  

 
which under steady state condition, namely          , yields 
 

     (                  )  
 
Here   (                  ) is an implicit function in which the steady state activity of    
is described in terms of all other   . To derive the local response matrix for this system we 

induce a small perturbation     on the steady state activity of  , and examine the response 

of  , providing 
 

    
   

   
  

   
   

  

 
The partial derivative “ ” means that no other node’s activity was allowed to change in   and 
 ’s neighborhood, hence        only if        Indeed, for   to impact   through a longer 

network path, one or several transitive nodes must also be perturbed. Note that by 
definition       since    is absent in   . Hence self-feedback loops are not accounted for by 
   . 

 
In a real experimental setting the partial correlation matrix is typically inaccessible. In 
reality, had the activity    been perturbed, one would observe the response of all other 

node activities, so that the resulting impact on   is a convolution of all direct and indirect 
paths connecting   and  , leading to the global response matrix 
 

    
   

   
  

 
 The formal relationship between     and     is given by the identity 

 

(S1) 

(S2) 

(S3) 

(S4) 
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valid for any    . Clearly for     we have           , which together with (S5), written 
in terms of     and    , leads to [1] 

 
     

    ∑       

 

   

   
  

 
a closed set of     linear algebraic equations, from which     can be extracted.  

 
The problem with (S6) is that it consists of    coupled equations, making the calculation of 
    computationally infeasible. Indeed, for a network of, say,       nodes, the number of 

equations in (S6) is      , beyond the feasibility limit of most computational resources. 
We thus derive an approximate solution to (S6). Consider the matrix multiplication    . 
Using the second equation in (S6) we find that its off-diagonal terms satisfy 
 

[   ]           
 
For the diagonal terms we write 
 

[   ]   ∑       

 

   

  

 
which we approximate as 
 

[   ]   ∑          [(   ) ]  

 

   

  

 
where the subtraction of the identity matrix,  , accounts for the fact that while the diagonal 
terms of     are all one, these terms are zero in    . The meaning of the approximation in 

(S9) is that for a pair of directly interacting nodes,   and  ,        , stating that for nearest 
neighbors the correlation is dominated by the direct interaction, and indirect contributions 
have only a marginal effect. Note that we only rely on this approximation in evaluating the 
impact of the   diagonal terms (S8), but not in the construction of the  (   ) equations 
for the off-diagonal terms (S7). Thus we expect this approximation to have only a marginal 
impact on the accuracy of the resulting     (for a more rigorous analysis of this 

approximation see Sec. S.I.3). From Eqs. (S7) – (S9) we have 
 
 

(S5) 

(S6) 

(S7) 

(S8) 

(S9) 
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         (   )       ((   ) )  

 
where  ( ) is a matrix whose diagonal terms are taken from   and whose off-diagonal 
terms are set to zero. Multiplying both sides of (S10) by     we arrive at our key result 
 

  (     ((   ) ))     

    
allowing us to approximate     using standard scalable matrix operations, taking only     as 

input. While (S11) provides an approximate solution for all off-diagonal terms of    , it does 

not guarantee that the diagonal terms satisfy      . As explained above     is not designed 

to infer self-feedback loops, so in order to avoid the prediction of such spurious loops, after 
applying (S11), we manually set all diagonal terms of     to zero.  

 
 

2. Derivation using network paths 
 
Below we re-derive Eq. (S6), the premise from which (S11) is reached, using a graph 
theoretical approach, providing insight on the network origins of the proposed silencing 
methodology. Consider a perturbation in the activity of a source node   and its impact,    , 

on a target node  . We first evaluate the impact of   on the target’s nearest neighbors  , and 
then find the impact of the neighbors on the target itself. The former is given by    , 
providing the perturbation of the target’s neighbors via all network paths between   and  . 
Yet once the perturbed state of the target’s neighbors   is known, their impact on   should 
be calculated using    . Indeed all paths leading from   to   must pass through one of  's 
nearest neighbors, so once the state of the neighbors is set, only their direct impact on   
matters. All indirect effects have already been accounted for when the perturbations of the 
neighbors were considered (Fig. S1). This leads to an equation of the form 
 

(

    
          
          

      

)  ∑ (

           
          
           
         

)(

        
         
         
         

)
               

        
         

  

 
where full impact describes all direct and indirect effects and partial impact describes only 
direct effects. Clearly, (S12) translates to 
 

    ∑       

 

   

  

 
the second equation in (S6). Hence (S13) and (S6) are exact equations providing     

through summing over all network paths leading from   to  . 
 

(S10) 

(S11) 

(S12) 

(S13) 
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3. The validity of the approximation 
 
To evaluate the approximation 
 

 (   )   ((   ) )  

 
used in the derivation of (S11), we explicitly write the terms of the two matrices 
 

[ (   )]   {∑       

 

   

   

          

 

 
and 
 

[ ((   ) )]
  

 {∑       

 

   

     

          

  

 
Since       only if   and   are directly linked, the number of elements in the sum of (S15) 
is exactly   , the degree of node  . Moreover, as this sum includes only nearest neighbors of 
 , we write  
 

〈[ (   )]  〉   ∑ 〈      〉 
           

 〈 〉〈 〉     ( )  

 
where 〈 〉  denotes an average over  , 〈 〉 is the average degree and  ( ) is the average 
response between nodes at distance  . The average nearest neighbor local response, 〈 〉    , 
describes the direct impact between nearest neighbor nodes. Assuming that the impact 
between all pairs of nodes is dominated by the shortest paths between them, we neglect 
the contribution of indirect paths to the impact between nearest neighbors. This allows us 
to write  ( )  〈 〉    , namely there is no significant difference between     and     among 

nearest neighbors (as is clearly observed in Fig. 1a in the paper). We thus write 

Figure S1. Construction of     by summing 

over network paths. The impact of the 
source on the target is derived by first 
evaluating the impact on the target’s 

neighbors (   ) and then the neighbor’s 

impact on the target (   ). 

(S14) 

(S15) 

(S16) 

(S17) 
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〈[ (   )]  〉  〈 〉  ( )  
 
Similarly we evaluate the sum in (S16), decomposing it into groups of     pairs at distance 
  

〈[ ((   ) )]
  
〉   ∑〈        〉 

 

   

 ∑  ( )

    

   

  ( )     

 
where  ( ) is the average number of neighbors at distance   from a node. The     term 
in the summation is  ( )  ( )       , and the     term is  ( )  ( )  
〈[ (   )]  〉 (S18). Thus (S18) is actually the leading term of (S19), and hence the validity 
of the approximation (S9) depends on the convergence properties of the sum in (S19), 
namely 
 

〈[ ((   ) )]
  
〉  ∑  ( )  ( )

    

   

  

 
While  ( ) tends to increase with  , as nodes have a growing number of neighbors at 
increasing distances,  ( ) tends to decrease with  , as perturbations decay with distance. 
Thus the terms of the sum (S20) depend on the growth rate of  ( ) coupled with the decay 
rate of  ( ). For a typical small world network we have [2] 
 

 ( )      
in which case it can be shown that [3] 
 

 ( )        
 
where    . This indicates that the decay of  ( ) is equal to (or more rapid than) the 
inflation of  ( ). Equation (20) becomes 
 

〈[ ((   ) )]
  
〉  ∑  (    )  

    

   

   (    )   ((  (    ) )
 
)  

 
in which the leading term in the summation, as shown above, is equal to 〈[ (   )]  〉. The 
error, given by the remaining terms in the summation, is of order  
 

   (    ) 

  (    ) 
    

 
confirming the approximation (S9). 
 

(S18) 

(S19) 

(S20) 

(S21) 

(S22) 

(S23) 

(S24) 
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The approximation (S9) will fail if the decay of  ( ) is slower than the expansion of  ( ), 
namely when    . While this is not strictly prohibited, we argue that for systems of 
interest in the context of network inference this is extremely unlikely. The case in which 
    describes a system where the impact of a local perturbation gains strength as it 
propagates through the network: each target node is perturbed by  ( ), and the number of 
exposed nodes at   is  ( ). Hence using (S21) and (S22) we obtain the overall impact at 
distance     
 

 ( )   ( ) ( )     (   ) 
 
which inflates exponentially with   for    . This describes an unstable system, in which 
local perturbations do not decay. Rather they have a growing impact as they reach more 
distant nodes, driving the entire system into a new state. While interesting on its own right, 
this kind of systems is obviously not a good candidate for network inference using local 
perturbations. Naturally, perturbation experiments are meaningful when the system is 
stable, and the perturbations decay as they propagate along network paths. Indeed, the 
premise of inferring links from correlations is that correlations are strong only in the 
vicinity of the perturbed node, a condition which is only met when the approximation (S9) 
is satisfied. 
 
 

4. From theory to empirical realization 
 
Equation (S11) is designed to detect direct links from perturbation experiments. In the 
developed framework a perturbation of node   is realized by an external intervention, 
which in effect changes the  th equation from (S1) to 

 
     

         

 
where   

   is the steady state activity of   and     is the induced perturbation on   . All the 
other equations in (S1) remain unchanged. Hence the experimenter forces a perturbation 
on node  , in effect, shifting node  ’s dynamics from (S1) to (S26). This perturbation will, in 
turn, propagate to all other nodes in the network through the rest of the equations.  
 
The above is a rather accurate depiction of the common practice of gene overexpression. In 
practice, however, the empirically obtained     could be a result of a broader set of 

experimental realizations. For instance, experimental perturbations might not be small, 
violating the infinitesimal limit under which our method is derived. In fact, an entire gene 
could be knocked out altogether, a rather large perturbation, which could be realized by 
substituting (S26) with the equation     . Moreover, the correlations between nodes are 
not always measured directly from the response terms         (S4). Most commonly, one 

uses statistical correlations, e.g. Pearson or Spearman correlation coefficients, as a proxy 
from which to construct    . Our experimental results, presented in the paper (Fig. 2) are, 

(S25) 

(S26) 
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in fact, no exception (see Sec. S.IV), as they rely on statistical similarity measures and not 
on direct measurement of (S4). Still, the silencing method, rigorously derived to treat the 
global response matrix (S4) is demonstrated to successfully apply to these empirically 
accessible proxies. The different methods by which one practically measures     would be 

significant if we aimed to predict the specific response of one gene to a perturbation of 
another, namely a specific     term. However our goal is different: inferring the structure of 

the network does not depend on the specific method by which the     terms were acquired, 

but rather on the global relationships between them. The idea is that the global structure of 
    reflects in some way the patterns of propagation of the perturbations along the network 

paths. The silencing method uses linear algebra, network science and differential tools to 
help interpret this global structure of     and turn it into local link predictions via (S11). 

Hence what matters is the patterns of flow that are encrypted within the relationships 
between the     terms. These flow patterns are inherent to the underlying network 

structure, and should not depend too strongly on the experimental realization. For 
instance, a cascade       will be characterized by a decreasing correlation propagating 
along the arrows – a large correlation between   and   and a weaker one with  . The 
specific magnitude of these correlations might depend on the size or form of  ’s 
perturbation or on the statistical measure by which they were evaluated, but the decaying 
pattern, which is what is needed to infer the cascade structure, is an inherent property of 
the network flow. In this sense, our analysis relying on perturbations of the form of (S26) 
should be seen as a mathematical convenience. It allows us to rigorously derive the 
silencing method relying on the fundamental tools of network dynamics, but its 
implications are relevant for many practical empirical realizations. We exemplify this in 
Fig. S2, where we show numerically that silencing is observed, regardless of the magnitude 
or type of the induced perturbations. 
 
 
 

Figure S2. Silencing under different types of 
perturbations. To test the performance of the method with 
large perturbations we numerically constructed     with 

overexpression (OE) perturbations increasing in size from 
20 – 100% (here extracting Pearson correlations from the 
resulting expression patterns). The silencing,  , is observed 
to be unaffected by the perturbation size. Even constructing 
    from gene-knockout experiments does not harm the 

silencing.     
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II. Directed vs. Undirected Networks 
 
Silencing is most crucial in systems where indirect correlations play an important role. 
Indeed, when strong indirect correlations persist it becomes impossible to distinguish 
direct from indirect links without the silencing effect of Eq. (S11). Below we show that 
directed networks give rise to stronger transitive effects than undirected networks, and hence 
their inference strongly depends on the silencing method. While here we demonstrate this 
using a specific model, the results we obtain are, in fact, quite general [1,3]. Consider a 
system whose dynamics (S1) is given by 
 

   

  
      ∑       

 

   

  

describing a constant influx contributing to   ; a degradation term; and negative regulation 
by  ’s nearest neighbors. We examine the structure of     as a result of applying (S27) on a 

directed versus an undirected Bethe lattice (Fig. S3a). In a Bethe lattice, each node is 
assigned a level, denoting its hierarchical position in the tree-like structure, so that a node 
from the  th level is linked to one node at level     and to     nodes at level    . 
Denoting the average steady state activity of nodes at level   by   , we write (S27) under 
steady state condition as 
 

            (   )         
 
for the undirected network and 
 

              
 
for the directed network. In (S29) the level       nodes do not impact nodes from level  . 
Following the procedure of (S3) we induce a small constant perturbation       and test 
the cascading effect on   ,      and so on. For the undirected network we have  
 

  (      )  (          )(      )  (   )(      )        
 
while for the directed network we have  
 

  (      )  (          )(      )     
 
Note that      was not perturbed in (S30), only      and   , following the “ ” notation of 
(S3), which excludes indirect effects. Incorporating the steady state assumption ((S28) and 
(S29)) and taking only linear terms in     we find 
 

       
   

     
 

〈 〉

 〈 〉   

     
   

     
 

〈 〉

〈 〉   

 

(S27) 

(S28) 

(S29) 

(S30) 

(S31) 

(S32) 
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Figure S3. Silencing in directed vs. undirected networks. (a) An undirected versus a 
directed Bethe lattice. The red node has been perturbed, impacting the blue node, one level 
below. In the undirected network the green nodes at level 4 also regulate   , while in the 
directed network the impact is governed by the red    node alone. (b) The silencing of indirect 
correlations is stronger in the directed network than in the undirected network, as shown by 
the increased difference between direct (green bars) and indirect (orange bars) terms in     vs. 

   . (c) As the distance between nodes is increased, the silencing becomes more significant. The 

effect is more emphasized in the directed network. 

 
for the undirected and directed networks respectively. Here 〈 〉 denotes the average steady 
state activity of all nodes in the system. Equation (32) indicates that the direct impact 
between nodes is greater in the directed network than in the undirected network. The 
impact at larger distances  , roughly given by  ( )        

   ( ( )      
 ) is thus also 

expected to be greater in the undirected network (an exact solution to this problem 
appears in [1]). Such large impact at a distance will make the directed network’s     less 

predictive, and hence the silencing method more effective. 
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To test the silencing effect on directed/undirected networks we numerically simulated the 
dynamics of (S27) and obtained the global and local response matrices,     and    , via 

(S11). In Fig. S3b we compare the silencing effect in both networks, finding that indeed 
stronger silencing is observed for the directed network. We also find that the silencing of 
correlations at distance   increases more rapidly for the directed network than the 
undirected network (Fig. S3c).  
  
 

III. Numerical Support 
 
To test the predictive power of the method (S11) we used it to infer the network of a 
numerically simulated system, providing a controlled environment, where we could test its 
precision. We used a scale-free network consisting of         nodes and          
links. The dynamical equations (S1) where taken to follow Michaelis-Menten dynamics [4 - 
5] 
 

   

  
     ∑   

  

    
 

 

   

 

 
which we solved using a fourth-order Runge-Kutta stepper. After reaching steady state we 
numerically induced a constant perturbation on the activity of all nodes as shown in (S26). 
The system then reached its new, perturbed, steady state, providing the global response 
matrix,     (S4). To derive     we used (S11), achieving 100% accuracy in predicting the 

system’s topology: all non-interacting node pairs were found to be associated with terms 
satisfying       . 

 
 

IV. Empirical evidence 
 

1. The data 
 
We used the DREAM5 datasets, which are described in detail in [6]. The input data includes 
a compendium of 805 microarray experiments, in which the expression levels of 4,511 
genes were measured under different experimental conditions, giving rise to an 
          expression matrix    . Of the 4,511 genes a total of 5% were added by the 

DREAM5 organizers as decoy genes, so that only 4,297 entries in the expression matrix 
represent real experimental data. In this dataset the genes are anonymized so that links 
could only be inferred from the given expression matrix. In addition to the expression 
matrix the input data also includes a list of 141 genes, designated as potential transcription 
factors.  

(S33) 
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We validated our predictions using the gold standard benchmark for E. coli provided by the 
DREAM5 challenge. This benchmark includes 2,066 transcriptional interactions 
constructed from RegulonDB (Release 6.8), all of which are supported by at least one 
strong type of evidence (as annotated by RegulonDB). We used this gold standard to 
construct the             directed adjacency matrix    . 

 
 

2.  Analysis and evaluation 
 
Using the expression matrix,    , we constructed     between all genes resulting in a 

            global response matrix (see below). We then used Eq. (S11) to obtain    . 

The terms of     and     were used to evaluate the likelihood of a transcriptional link 

between all 141 transcription factors and 4,511 potential target genes, amounting to 
                  potential links. Ranking these links based on their likelihood we 
obtained two lists    and   , representing the link predictions of     and     respectively. 

For example, the first   entries in the    list represent the   most likely links, as predicted 
by    . 

 
ROC curves: we define the true positive rate as [6] 
 

   ( )  
  ( )

 
  

 
where   ( ) denotes the number of true positives in the top   predictions and   is the 
number of positives in the gold standard. Similarly the false positive rate is defined as 
 
 

   ( )  
  ( )

 
  

 
where   ( ) is the number of false positives among the top   predictions and   is the 
number of negatives in the gold standard. 
 
Discrimination ratio and silencing: an important role of an inference method is to 
discriminate between direct and indirect interactions. For a given prediction list, say   , we 
averaged over all entries     associated with direct links (2,066 terms in the DREAM5 

dataset) to obtain 〈   〉   , and over all the remaining entries to obtain 〈   〉     . The power 

of     to discriminate between direct and indirect links is then given by the discrimination 

ratio 
 

   
〈   〉   

〈   〉     
  

(S34) 

(S35) 

(S36) 



Silencing Indirect Correlations for Link Prediction – Supplementary Material 

 

13 
 

 
where the larger is    the more discriminative is    . By silencing indirect correlations Eq. 

(S11) leads to 〈   〉      〈   〉     , and hence a larger   . The silencing is given by  

 

  
  

  
  

 
capturing the extent to which     is more discriminative than    . 

 
Motif analysis: in addition to the overall silencing described above, we also focused on the 
silencing of two specific motifs, cascades and co-regulatory sequences, which are highly 
prevalent in biology, and pose a challenge to most inference techniques (see Fig. 2e - f in 
the paper). Each of these motifs is associated with three response terms:     (or     in the 
case of co-regulation) and    , which are associated with existing links, and    , which is a 
result of an indirect interaction. To evaluate the discrimination ratio for these motifs we 
calculated 
 

  
        

〈
 
 

(       )〉

〈   〉
 

 
and 
 

  
            

 
〈
 
 

(        )〉

〈    〉
  

 
where the average is over all relevant motifs in the network. The same was calculated for 
   , and the ratio was used to obtain the motif silencing as in(S37). 

 
 

3. Method for calculating      

 
We used three standard methodologies to calculate the global response matrix    , as 

described below: 
 

(i) Pearson correlations: We denote by    the  th column of the expression matrix 
   . This vector lists the expression levels of gene   under all           
experimental conditions. For every transcription factor   we calculated Pearson’s 
correlation coefficient with all target genes   as 
 

    
〈    〉  〈  〉〈  〉

√〈  
 〉   〈  〉 √〈  

 〉   〈  〉 
  

(S37) 

(S38) 

(S39) 

(S40) 
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(ii) Spearman rank correlations: To calculate Spearman’s correlation between the 

transcription factors and all target genes we first transform the expression 
vectors    and    into rank vectors    and   . The  th entry in the rank vector 

denotes the rank of the corresponding entry in the expression vector. The 
Spearman correlation is then calculated by applying (S40) to the rank vectors    
and   . 

 
 

(iii) Mutual information: We constructed     using the mutual information between 

   and   , defined as 

 

    ∑  (     )

     

   
 (     )

 (  ) (  )
  

 
where  (     ) is the probability that randomly selected terms from    and    

are equal to    and   , and  (  ) ( (  )) are the relevant marginal probability 

distributions. Mutual information has been shown to be a superior link 
predictor compared to Pearson/Spearman correlations, as is also supported by 
our results (Fig. 2c) [7-9]. 

 
 

4. Additional processing of the correlation data  
 
As Eq. (S11) indicates, the silencing method requires that the input matrix,    , is invertible. 

This may not be guaranteed when using statistical measures such as Pearson or Spearman 
correlations. For instance, if the number of experimental conditions (columns in the 
expression matrix) is small compared to the number nodes (rows in the expression 
matrix), the resulting correlation matrix is likely to be singular. This is a rather common 
problem in dealing with statistical correlations applied to limited datasets and several 
solutions are summarized in [10]. Below we focus on two solutions of particular relevance: 
 

(i) In the analysis of the DREAM5 datasets, described above, we did not have to 
construct the complete             correlation matrix, as the 141 
transcription factors were already known. Hence, following the DREAM5 
protocol, we only constructed the           matrix of the correlations 
between the transcription factors and their potential targets. To obtain a square 
matrix we then set the diagonal terms for all the rest of the nodes to unity. The 
resulting matrix, in which the correlations for 141 nodes were obtained from 
    experimental conditions is expected (and indeed found) to be invertible. 
  

(ii) A more statistically significant, and likely invertible, correlation matrix could 
also be obtained by additional processing of the raw Pearson/Spearman 

(S41) 
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correlation matrix. First we compute the correlation between the activity vectors 
   and    for each pair of nodes,   and  . We then calculate the statistical 

significance of the obtained correlation by randomizing    and   , and assigning 

a  -value for the measured correlation. This results in a significance matrix, 
likely to be invertible, even if the raw correlation matrix was singular. 

V. Robustness of the method 
 
We now turn to analyze the robustness of the method against uncertainty in the data. We 
first examine the method’s performance in the presence of noise, and then refer to case of 
hidden nodes, where a fraction of the nodes are experimentally inaccessible. 
 

1. Robustness against noise 
 
Clearly, all experimental data is subject to noise, so that the global response matrix,    , 

used as input for silencing, is characterized by a certain level of uncertainty. Hence we ran 
extensive numerical simulations in order to test the impact of noise on the silencing effect. 
As a first step we constructed a linear cascade of 15 nodes in which the response between 
all neighboring nodes was set to  . The global response matrix in this case is 
 

          

 
where     is the distance between   and  . Applying (S11) to (S42) we obtain    , which 

provides a perfect reconstruction on the original cascade network. To explore the impact of 
uncertainty we introduced Gaussian noise into    . Assuming that each term in the 

noiseless    , represents an expectation value      , we allow the measured     to express 

some variability around  . We achieve this by drawing the     term of the global response 
matrix from a normal distribution with an average of   and a variance of      , leading 
to a noisy     with a signal to noise ratio given by  . We then measured the silencing,  , for 

increasing values of  , finding that the silencing decays as (Fig. S4a)  
 

       
 
This power law dependence represents a rather slow decay of the method’s performance 
(i.e. not exponential). Silencing is completely lost when the noise reaches a critical level,   , 
for which     (dashed line in Fig. S4a). We find that for most values of   we have      , 
so that silencing is lost only when the signal becomes completely driven by noise. Taken 
together, the slow decay of the silencing (S43) and its persistence up to      , both 
indicate the system’s high robustness against noise.  
 
As   becomes larger, the decay of the terms of     with distance becomes slower (S42). 

Hence direct and indirect responses becomes less distinctive and the discrimination ratio 
of     decreases. As long as    , however, the ranking of the     terms is ensured, that is 

(S42) 

(S43) 
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indirect response terms are guaranteed to be smaller than direct ones. Silencing will 
further lower the indirect terms, and (S11) will remain accurate. In the limit where    , 
the noise can lead to a situation where indirect responses exceed direct ones. For instance 
for       we have for next nearest neighbors            . Under these 

circumstances, even a small amount of noise could cause the indirect terms to seem greater 
than the direct ones, confounding    ’s ability to properly identify and silence the indirect 

responses. Thus the greater is the direct impact between nodes,  , the higher is the 
method’s sensitivity to noise and the lower is   . In Fig. S4b we show    vs.  , finding that 
indeed for most values of   the critical noise level is at a signal to noise ratio of about unity, 
so that the method is highly robust against noise. As predicted, when   approaches unity 
we observe a sharp drop in the method’s robustness. 
 
Following a similar procedure we further tested the performance of (S11) with noise on the 
numerical     described in Sec. S.III. As expected silencing is unharmed for small values of 

 , representing low noise levels (Fig. S4c). For high noise levels (     ) we find that the 
complex network displays similar behavior to what we found for the linear cascade, with 
the silencing decreasing as a power of the noise level (      ), becoming completely void at 
     . 
 
 

 
Figure S4. Silencing in a noisy environment. In order to test the method’s performance with noisy input we 
introduced Gaussian noise into the numerically obtained    , and measures the silencing,  , vs. the signal to 

noise ratio  . (a) For a linear cascade network we find that the silencing decays as    , representing a gradual 
decay in performance due to noise. Silencing is lost at     , for which     (dashed line). When 
perturbations decay rapidly (   ) we have      (blue). As   is increased    becomes smaller and the 
system is more sensitive to noise (orange and magenta). (b) The critical noise level,   , vs.  . For most values 
of   silencing persists even when the noise levels are high, failing only at     . When   approaches unity, a 
sharp drop is observed, indicating that     becomes sensitive to noise. The dashed line marks       . (c) We 

tested the resilience of the method to noise for a scale free network (Sec. S.III). For low noise levels (     ) 
silencing is unharmed. As the noise level is increased the silencing decreases as        , similarly to the 
behavior of the cascade network in (a). Silencing is lost at        . 
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2. Robustness against hidden nodes 
 
Another source of uncertainty is the case of hidden nodes, in which the input matrix     

includes only a subset of all the nodes acting in the system. The remaining hidden nodes 
impact the system’s observed correlations, but are inaccessible experimentally. To evaluate 
the impact of such hidden nodes on the performance of the method we analyze the 
dependence of the silencing,  , on the fraction   of hidden nodes. As explained in Sec. S.I.2 
the silencer transformation is designed to detect the network paths and silence all but the 
direct ones. It assumes that the observed     is a convolution of all paths in the network 

and uses self-consistency (Eq. (S11)) to reveal the unique solution for the underlying 
network. Silencing will thus fail if such a self-consistent solution cannot be found. This will 
occur when the fraction of hidden nodes exceeds a threshold   , for which most paths 
between nodes become hidden. Equation (S11) will not silence those hidden paths and will 
leave their correlations untouched. Below we show that for dense networks, even under 
many hidden nodes, most paths remain unhidden, and hence     , namely even with a 
large fraction of hidden nodes     maintains its predictive power. 

 
Consider a network of   nodes, of which a fraction   are hidden. Our experimental access 
to the system is through the     global response matrix    , where     (    ) . Our 

goal is to infer the underlying sub-network of the   unhidden nodes using (S11). First we 
consider the scenario in which the sub-network constitutes a giant connected component, 
namely that there exists a path connecting all or most pairs of nodes in the observed   node 
system. In this case, as all paths are present, the self-consistent solution of (S11) can be 
satisfied and the transformation will successfully silence the indirect paths. However, if a 
pair of nodes,   and  , becomes isolated in the sub-network, that is the path (or paths) 
linking them passes through the hidden nodes, the pertinent     term will not be silenced. 

Indeed, in the absence of the (   ) path, the only self-consistent solution is that the non-
zero     term originates in a direct link (Fig. S5a).  

 
To illustrate this we consider the simple example of a linear cascade      , in which   
is a hidden node, and all we are offered is experimental access to the indirect response of   
to  ,    . Clearly, under these circumstances, Eq. (S11) will not be able to classify the     link 

as indirect. Indeed, in this case, absent any other node or information about the system, it is 
mathematically impossible to classify this link as direct or indirect, as there is no 
information in the observed response matrix from which the existence of node   could be 
inferred. This is exemplified in Fig. S5b where we present the silencing for all pairs of 
nodes alongside the silencing of isolated pairs, which cannot be connected via a finite path. 
Indeed, for pairs of isolated nodes, we observe no silencing at all (   ). Hence the 
performance of (S11) with hidden nodes depends on the number of hidden paths, namely 
the fraction of node pairs that are connected by a finite path in the original   node 
network, but become isolated in the unhidden   node sub-network.  
 
To test this conclusion we used the numerical experiment described in Sec. S.III, taking the 
original           node    , and eliminating a randomly selected fraction   of the nodes. 
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We then applied (S11) to the resulting     global response matrix to predict    , and 

calculated the silencing ratio. For each of the sub-networks we also calculated 
 

  
    

  
 

 
where      is the number of node pairs that are linked via a finite path and    is the 
number of isolated node pairs. Fig. S5c indicates that  , capturing the ratio of finite vs. 
infinite paths among the unhidden nodes, is indeed a predictor of the method’s 
performance. For     silencing is lost and     is expected to have a comparable predictive 

power to    . As   is increased, the fraction of isolated node pairs decreases, silencing 

becomes stronger and the method’s performance is improved. 
 
Typically, eliminating nodes from a random network results in the emergence of a giant 
connected component: a fraction   of the nodes remain linked by finite paths, while the 
remaining     become isolated [2]. Hence the number of finite paths in the resulting sub-
network is proportional to the number of pairs of nodes in the giant connected component, 
namely 
 

     
  

 
  

 
A pair of isolated nodes could either be composed of one node from the connected 
component and one that is not, or when both nodes are out of the giant component. This 
provides 
 

     (   )  
(   ) 

 
 

 

 
(    )  

 
which together with (S44) and (S45) yields 
 

  
  

    
  

 
As we have shown above, for silencing to persists one must have       , which in (S47) 

provides    √        (see Fig. S5d). Hence the critical fraction of hidden nodes,   , for 

which silencing fails and     loses its predictive power is when the largest connected 

component enters below a threshold of     . Below we show that for a typical, 
biologically relevant network, this allows a rather large fraction of hidden nodes. 
 
For a random graph with an average degree 〈 〉 it has been shown that the size of the 
largest connected component satisfies [2] 
 

      〈 〉   

(S44) 

(S45) 

(S46) 

(S47) 

(S48) 
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from which we obtain the critical average degree  
 

〈  〉  
 

  
  (

 

    
)  √   (√   )       

 
Hiding nodes from the network eliminates the edges associated with them, and thus 
decreases the average degree. When a randomly selected fraction   of nodes has been 
hidden, each of the remaining nodes is expected to lose a similar fraction of its associated 
edges, so that the average degree of the remaining sub-network becomes 
 

〈 ( )〉  〈 〉(   )  
 
This is clearly demonstrated in Fig. (S5e). Substituting the l.h.s. of (S50) with the critical 
degree (S49) we find that the critical fraction of hidden nodes is  
 

     
〈  〉

〈 〉
  

 
Equation (S51) describes the critical fraction of hidden nodes, above which the silencing 
ratio is one, and     becomes no more predictive than    . For dense networks, with a large 

〈 〉, we have     , indicating that the silencing method is extremely robust against 
hidden nodes. For instance for 〈 〉    , a realistic value in the biological context, we have 
      , namely indirect paths will still be silenced even if the fraction of hidden nodes 
approaches 80%. In our numerical example 〈 〉   , for which (S51) predicts        . 
Indeed, as Fig. S5f indicates silencing is terminated for all     , and for      the 
silencing ratio starts to increase, so that the method begins to gain predictive power.     
  

(S49) 

(S51) 

(S50) 
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Figure S5. Performance of the 
method with hidden nodes. (a) A 
network with     nodes of which a 
fraction        are hidden. The 
resulting sub-network has     nodes 
(light blue), five of which constitute a 
connected component and one which is 
isolated. Equation (S11), applied to the 
sub-network will successfully silence 
the indirect correlations associated with 
the unhidden paths of the connected 
component. However the correlations 
between the isolated node and the rest 
of the network, which cannot be 
associated with an existing indirect 
path, will not be silenced. (b) The 
silencing of correlations associated with 
finite paths (   ) is large (orange 
bar), while for correlations between 
isolated nodes (   ) it is    , 
namely no silencing (purple bar). Hence 
for the node pairs that are connected via 
hidden paths     is not more predictive 

than    . Thus as long as the isolated 

node pairs (connected via hidden paths) 
are a minority     maintains its 

advantage, but if the majority of nodes 
become isolated     becomes 

comparable to     and the silencing 

approaches    . (c) To exemplify this 
we present   vs.  , which describes the 
ratio of finite (existing) to infinite 
(hidden) paths (S44). Silencing is 
observed as long as most node pairs are 

connected by finite paths (   ), but when the hidden paths dominate (   ) silencing no longer plays a 
significant role. (d) The value of   is determined by the size of the largest connected component,  , as given 

by (S47). The critical value of      corresponde to    √    (dashed red lines). Hence the critical fraction 

of hidden nodes,   , is reached when the largest connected component has size   . (e) The average degree of 
the unhidden nodes vs. the fraction of unhidden nodes,     (circles) is in perfect agreement with Eq. (S50) 
(solid line).  (f) Silencing vs. the fraction of hidden nodes. Silencing is maintained as long as     . Above the 
critical fraction   , given by (S51), silencing becomes insignificant and     shows no advantage over    . For 

this network we have 〈 〉   , providing        . 
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